Acute toxicity, and antimicrobial and antifungal activity in vitro were determined as previously described.⁵

Urinary Excretion of the Drug.-A single oral dose of 20 mg/kg of the drug was administered by intubation and the urine of each rat was collected (in metabolic cage) after 6 hr. The urinary level was determined according to the standard cylinder plate assays modified by Degen, et al. B. subtilis ATCC 9466 was used as test organism. Each drug was used as its own standard.

(5) E. Massarani, D. Nardi, L. Degen, and M. Magistretti, J. Med. Chem., 9, 617 (1966).

(6) (a) "The Pharmacopeia of the United States of America, ' 17th revision, U. S. P., Bethesda, Md., 1965; (b) L. Degen, M. Salvaterra, and S. Vella, Chemotherapy, in press.

Antibacterial Nitrofuran Derivatives. 3. 5-Nitro-2-furaldehyde Piperazinoacylhydrazones

D. NARDI, E. MASSARANI,* S. ROSSI, A. Tajana, and L. Degen

Research Division, Recordati s.a.s., Milan, Italy

Received January 18, 1971

As a part of our investigations on nitrofuran derivatives we recently described¹ a series of water-soluble These activities were comparable to or sometimes better than that of nitrofurantoin.³⁻⁵

The purpose of this paper was to synthesize a series of compounds with the following structure

to determine the effect of various substituents at the N atom of piperazine and the effect of the modification of the X group.

Chemistry.-The synthetic steps leading to the formation of 5-nitro-2-furaldehyde piperazinoacylhydrazones are outlined in Scheme I and are described in the Experimental Section.

The N-(β -hydroxyethyl)-, N-benzyl-, N-(p-nitrophenyl)-, N-acetyl-, and N-(diethylcarbamoyl)piperazines were prepared according to other methods previously reported.6

Biological Results (Table I) .- The acute toxicity was determined ip in mice. All compounds were tested for bacteriostatic activity in vitro on the following microorganisms: Escherichia coli 100, Salmonella typhimurium 1090, Pseudomonas aeruginosa H2, Proteus vulgaris OX, Micrococcus pyogenes SG511, Streptococcus pyogenes A88, Bacillus subtilis ATCC 9466, Myco-

TABLE I

ANTIMICROBIAL ACTIVITY OF 5-NITRO-2-FURALDEHYDE N'-SUBSTITUTED PIPERAZINOACYLHYDRAZONES

			01	╷╨╻ሥ┙	CH=NNHO	0-x-n	NR			
No.	E. coli	S. typhi murium	Ps. aeruginosa	P. vulgaris	M. pyogenes	Strep- pyogenes	B. subtilis	M. tuberculosis	Drug urinary excre- tion	LDы, mg/kg ip
1	80	160	>160	160	40	160	40	40	0	300
2	20	40	>160	>160	10	20	10	10	0	300
3	10	40	>160	40	10	40	5	80	18.5	260
4	10	10	>160	40	5	10	5	40	20	120
5	20	20	160	80	5	20	5	20	11.5	300
6	10	20	>160	80	5	10	5	10	18	350
7	10	40	>160	80	10	20	5	>160	0	150
8	10°	>160	>160	>160°	0.625	5° >160	>160	>160	0	1300
9	10	>160	>160	>160	80	10	5	1.25	0	200
10	10	>160	>160	>160	10	20	5	20	0	180
11	80	>160	>160	>160	160	20	>160	40	d	210
12	40	160	>160	>160	10	1.25	5	20	0	270
13	20	80	160	160	10	80	10	2.5	0	180
14	80	80	80	80	20	40	5	40	0	500
15	>160	>160	>160	>160	20	2.5	40	0.31	0	>3000
16	20	80	>160	160	10	5	20	40	0	350
17	80	>160	>160	>160	10	5	10	40	0	80
18	>160	>160	>160	>160	160	>160	>160	>160	d	>3000
19ª	40	40	160	80	20	2.5	20	>160	24	315
20 ^b	5	40	160	80	10	5	10	>160	37	9 6

^a 5-Nitro-2-furaldehyde N'-methylpiperazinoacethydrazone. ^b Nitrofurantoin. ^c In Difco nutrient broth. ^d Not tested.

mono- and disubstituted aminoacethydrazones of 5nitro-2-furaldehyde active as antibacterial agents.

The 5-nitro-2-furaldehyde N'-methylpiperazinoacethydrazone 19² showed the highest urinary excretion and exhibited antibacterial activity in systemic infection of mice with Streptococcus pyogenes and Salmonella typhimurium, in im infection of mice with Staphylococcus aureus, and on urinary Proteus vulgaris infection of rats.

(1) E. Massarani, D. Nardi, A. Tajana and L. Degen, J. Med. Chem., 14, 633 (1971).

(2) Nonproprietary name, nifurpipone.

(3) L. Degen, M. Salvaterra, S. Vella, D. Nardi, and E. Massarani, Chemotherapy, in press

(4) L. Degen, M. Salvaterra, and S. Vella, ibid., in press.

(5) L. Degen, M. Salvaterra, and S. Vella, ibid., in press.

(6) (a) J. Kitchen and C. B. Pollard, J. Org. Chem., 8, 338 (1943); (b) J. C. Craig and R. J. Young, Org. Syn., 42, 19 (1962); (c) V. Prelog, G. J. Driza, Collect. Czech. Chem. Commun., 5, 497 (1933); Chem. Abstr., 28, 1348 (1934); (d) R. L. Bent, J. C. Dessloch, F. C. Duennebier, D. W. Fassett, D. B. Glass, T. H. James, D. B. Julian, W. R. Ruby, J. M. Snell, J. H. Sterner, J. R. Thirtle, P. W. Vittum, and A. Weissberger, J. Amer. Chem. Soc., 73, 3100 (1951); (e) G. Schorsch, U. S. Patent 2,973,362, Feb 28, 1961; Chem. Abstr., 55, 14488c (1961); (f) K. Fujii, K. Tomino, and H. Watanabe, Yakugaku Zasshi, 74, 1049 (1954).

		N'-Carbetho	XY-SUBSTITUTED PIPERA	ZINES			
H ₅ C ₂ OOCN NR							
R	Yield, %	Bp, °C (mm)	Recrystn solvent	Mp, °C	$\mathbf{Formula}^{c}$		
$n-C_{12}H_{25}$	73	154(0.1)			$C_{19}H_{38}N_2O_2{}^a$		
Citronellyl	75	138(0.4)			$\mathrm{C}_{17}\mathrm{H}_{32}\mathrm{N}_{2}\mathrm{O}_{2}{}^{b}$		
-			\mathbf{EtOAc}	182-183	$\mathrm{C_{17}H_{32}N_2O_2 \cdot HCl^d}$		
Geranyl	75		EtOAc	133 - 135	$C_{17}H_{30}N_2O_2$ HCl ^d		
$CH_2CH_2C_6H_5$	75	140(0.2)			$C_{15}H_{22}N_2O_2$		
			$i ext{-}\mathbf{PrOH}$	203–20 5	$\mathrm{C_{15}H_{22}N_{2}O_{2}\cdot HCl^{d}}$		

TABLE II

^a This substance was obtained by reaction of $n-C_{12}H_{25}Br$ with N-carbethoxypiperazine (R. Baltzly, S. W. Blackman, and W. S. Ide, J. Amer. Chem. Soc., **76**, 1164 (1954)]. ^b The pure base was obtained from the hydrochloride. ^c All compds were analyzed for C, H, N. ^d Cl anal. also.

 TABLE III

 Ethyl N'-Substituted Piperazinoacetates and Propionates

			C ₂ H ₅ OOC-X-N	NR		
х	R	Yield, $\%$	Bp, °C (mm)	Recrystn solvent	Mp, °C	$\mathbf{Formula}^{e}$
CHCH3	\mathbf{Me}	68^a	116 (14)			$C_{10}H_{20}N_2O_2$
CH_2	\mathbf{Et}	67^{b}	137 - 138(22)			$C_{10}H_{20}N_2O_2$
CH_2	n-Pr	70 ^b	136-137 (18)			$\mathrm{C_{11}H_{22}N_2O_2}$
				i-PrOH	178 - 179	$C_{11}H_{22}N_2O_2 \cdot 2HCl^{f}$
CH_2	i-Pr	75^{b}	137(15)			$C_{11}H_{22}N_2O_2{}^{g}$
				<i>i</i> -PrOH	192-193	$C_{11}H_{22}N_2O_2 \cdot 2HCl'$
CH_2	n-Bu	70 ^b	145(12)			$\mathrm{C}_{12}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}_{2}{}^{g}$
				i-PrOH	191-193	$C_{12}H_{24}N_2O_2\cdot 2HCl^{f,h}$
CH_2	n-C ₁₂ H ₂₅	80	160(0.2)			$C_{20}H_{40}N_2O_2$
CH_2	Citronellyl					$C_{18}H_{34}N_2O_2{}^c$
CH_2	Geranyl					${ m C_{18}H_{32}N_2O_2}^c$
CH_2	$\rm CH_2 CH_2 OH$	80	115-116 (0,4)			$C_{10}H_{20}N_2O_3{}^c$
CH_2	$\rm CH_2 CH_2 C_6 H_5$	50	147-148 (0.3)			$\mathrm{C_{16}H_{24}N_{2}O_{2}}$
				i-PrOH	215 - 217	$\mathrm{C_{16}H_{24}N_2O_2\cdot 2HCl^{\textit{f}}}$
CH_2	C_6H_4 -4- NO_2	75 ^d		<i>i</i> -PrOH	122 - 123	$C_{14}H_{19}N_3O_4$
CH_2	$\rm COCH_3$	70	125-127 (0.1)	Et_2O	40-42	$C_{10}H_{15}N_2O_3$
				i-PrOH	164-166	$\mathrm{C}_{10}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}_{3}\cdot\mathrm{HCl}^{\prime}$
CH_2	$\mathrm{CON}(\mathrm{C_2H_5})_2$	6 9	138(0.5)			$\mathrm{C}_{13}\mathrm{H}_{25}\mathrm{N}_{3}\mathrm{O}_{3}$
				EtOAc	136-137	$C_{13}H_{25}N_3O_3 \cdot HCl'$

^a The reaction was carried out in EtOH with K_2CO_3 . ^b N-Substituted piperazine 2HCl was used and to the reaction mixt was added 0.5 ml of H₂O and 0.02 mole of NaHCO₃. ^c The crude product was used in the next step. ^d The reaction was carried out in EtCOMe. The compd crystd from the reaction mixt on cooling. ^e See Table II, footnote c. ^f See Table II, footnote d. ^g Not analyzed. ^h H: calcd, 8.70; found, 9.18.

bacterium tuberculosis H_{37} Ra, Trichophyton mentagrophytes 1236, and Candida albicans 28.

The urinary excretion of all compounds was determined in rats. All compounds were compared for their activity with **19** and nitrofurantoin **20**.

The biological data in Table I showed that 18, in which two

groups are bound to the piperazine moiety, was inactive.

The removal of the Me group from 19 or the substitution with a hydroxyalkyl group (11) resulted in a lowering of antibacterial activity *in vitro* and in a loss of urinary excretion.

The lengthening of the alkyl group bounded at the N atom of piperazine resulted in an increase of the activity in *vitro*, whereas we observed an appreciable rate of urinary excretion only for the compounds with an alkyl up to 3 C atoms (**3-6**).

When R was an aralkyl or aryl group (12–15) the antibacterial activity *in vitro* was more pronounced against Gram-positive bacteria.

The N-acetyl and the N-diethylcarbamoyl derivatives (16, 17) exhibited an activity *in vitro* comparable to 19 but were not excreted in the urine.

It is also of interest that $\mathbf 3$ and $\mathbf 19$ with one C atom between the

and the N-methylpiperazine moieties were excreted in the urine whereas 2 with $X = CH_2CH_2$ was not ex-

TABLE IV N'-Substituted Piperazinoacylhydrazines

		H ₂ NNHC	D-X-N/NR		
x	R	Yield, %	Recrystn solvent	Mp, °C	$\mathbf{Formula}^d$
CH_2	Н	70		145-147ª	$C_6H_{14}N_4O'$
			EtOH	167-169	$C_6H_{14}N_40\cdot 3HCl\cdot H_2O$
$\rm CH_2 CH_2$	Me	78^{b}	$MeOH-Et_2O$	200-201	$\mathrm{C_8H_{18}NO} \cdot \mathrm{3HCl}^{\bullet} \cdot \mathrm{H_2O^{g}}$
CHCH3	Me	90		120–125ª	$C_8H_{18}N_4O$
CH_2	\mathbf{Et}	80	Ligroin	73-74	$C_8H_{18}N_4O$
CH_2	<i>n</i> -Pr	79	C ₆ H ₆ -ligroin	97	$C_9H_{20}N_4O$
CH_2	<i>i</i> -Pr	79	Ligroin	75-76	$C_9H_{20}N_4O$
CH_2	<i>n</i> -Bu	85	Hexane	75-76	$C_{10}H_{22}N_4O$
CH_2	$n-C_{12}H_{25}$	66	<i>i</i> -PrOH	85-86	$C_{18}H_{38}N_4O$
CH_2	Citronellyl	90			$\mathrm{C_{16}H_{32}N_4O^c}$
CH_2	Geranyl	70			$\mathrm{C_{16}H_{30}N_4O^c}$
CH_2	$\rm CH_2 CH_2 OH$	85			$\mathrm{C_8H_{18}N_4O_2}^{c}$
CH_2	$CH_2C_6H_5$	73	Cyclohexane	103-104	$C_{13}H_{20}N_{4}O$
CH_2	$\rm CH_2\rm CH_2\rm C_6\rm H_5$	80	$i ext{-PrOH}$	143 - 145	$\mathrm{C}_{14}\mathrm{H}_{22}\mathrm{N}_{4}\mathrm{O}$
CH_2	C_6H_4 -4- NO_2	80	MeOH	165-167	$\mathrm{C}_{12}\mathrm{H}_{17}\mathrm{N}_{5}\mathrm{O}_{3}$
CH_2	COCH3	75	i-PrOH–petr ether	103-105	$C_8H_{16}N_4O_2$
CH_2	$\mathrm{CON}(\mathrm{C_2H_5})_2$	80	C_6H_6 -ligroin	80-81	$C_{11}H_{23}N_5O_2$
CH_2	$\rm CH_2\rm CONHNH_2$	50	$MeOH-H_2O$	229-231	$\mathrm{C_8H_{18}N_6O_2}$

^a Bp (0.2 mm). ^b The hydrochloride was prepd in a conventional way from the crude hygroscopic base. ^c The crude product was used in the next step. ^d See Table II, footnote c. ^e See Table II, footnote d. ^f Not analyzed. ^g N: calcd, 17.86; found, 18.30.

creted. Almost all compounds were active in vitro against M. tuberculosis; only 7, 8, 18, and 19 were inactive. No in vivo activity was exhibited by the most active compound in vitro (15).

The compounds **3–6**, which had better rates of urinary excretion, were tested in systemic infection of mice with *Strep. pyogenes, S. typhimurium* and in subacute im *Staphylococcus aureus* infection of mice.

No activity was exhibited by 3. Compds 4 and 6 were active against *Strep. pyogenes* sepsis, 5 against *S. typhimurium* peritonitis, whereas 19 was active against all three test infections.

Experimental Section⁷

Geranyl *p*-Toluenesulfonate.—To a soln of 100 ml of geraniol in 50 ml of pyridine was added at -5° in small amts 57.18 g (0.30 mole) of *p*-TsCl, and the mixt was stirred at -5 to 0° for 7 hr. Then it was poured into cooled dil HCl, and the oil was extd with Et₂O. After drying (Na₂SO₄), the solvent was evapd and the residue was distd under a stream of N₂. The fraction of bp 90-100° (14 mm) was collected; yield 47 g (68%).

N'-Carbethoxy-N-geranylpiperazine.—A mixt of 9.7 g (0.05 mole) of N-carbethoxypiperazine HCl, 20.6 g (0.067 mole) of geranyl p-toluenesulfonate, 6.5 g (0.061 mole) of Na₂CO₃, and 30 ml of geraniol was stirred at 100° for 20 hr. Then 140 ml of 0.5 N NaOH was added and the mixt was extd with Et₂O. After drying (Na₂SO₄), the solvent was evapd and the crude oil was distd under stream of N₂. The geraniol distd at 65-75° (0.6 mm); the product distd at 135-140° (0.4 mm); yield 11.1 g (75%). The showed nonbasic impurities. The pure hydrochloride was obtd by acidification of Et₂O soln of the base with gaseous HCl. The pptd hydrochloride was collected and crystd. Table II summarizes pertinent data for these products.

N-n-Dodecylpiperazine.⁸—N'-Carbethoxy-N-n-dodecylpiperazine (16.3 g, 0.05 mole) was refluxed for 20 hr with 50 ml of 10 N

HCl. After cooling, the soln was made alkaline by adding NaOH and the oily layer was extd with Et₂O. After drying (Na₂SO₄), the solvent was evapd and the residue was distd: bp 139° (0.6 mm); yield 18.8 g (75%). Anal. ($C_{16}H_{84}N_2$) C, H, N.

N-Phenethylpiperazine⁹ was prepd from *N'*-carbethoxy-*N*, β -phenethylpiperazine by the above method: bp 94-96° (0.2 mm); yield 75%. Anal. (C₁₂H₁₈N₂) C, H, N.

N-Citronellylpiperazine.—A mixt of 3.32 g (0.01 mole) of *N*'carbethoxy-*N*-citronellylpiperazine, 2.34 g (0.04 mole) of KOH, and 10 ml of EtOH was refluxed for 12 hr. Then EtOH was evapd and H₂O was added to the residue. The oily layer was extd with Et₂O. After drying (Na₂SO₄) the solvent was evapd and the residue was distd: bp 93-96° (0.4 mm); yield 1.54 g (70%). Anal. (Cl₁₄H₂₈N₂) C, H, N. The HCl salt was prepain a conventional way. It crystd from EtOH: mp (235) 261-263°. Anal. (Cl₁₄H₂₈N₂·2HCl) C, H, N, Cl.

N-Geranylpiperazine was prepd by alkaline hydrolysis of *N*'-carbethoxy-*N*-geranylpiperazine as described for the *N*-citronellylpiperazine: bp 105-108° (0.4 mm); yield 80%. This product was used directly in the next step.

Ethyl N-Substituted N-piperazinoacetates (or -propionates).— To a stirred mixt of 0.01 mole of N-substituted piperazine, 0.01 mole of NaHCO₈, and 5 ml of acetone was added 0.01 mole of ethyl chloroacetate (or chloropropionate). The mixt was refluxed for 2-10 hr. The reaction time was determined by the on silica gel G (developed in MeOH-C₆H₆, 95:5, and sprayed with Dragendorff's reagent). The esters showed R_t values higher than the N-substituted piperazines. The hot mixt was evapd *in vacuo* and the crude oil was distd. These bases decomposed after a while; their HCl salts, prepd by conventional ways, were stable (Table III).

Ethyl N'-Citronellyl-N-piperazinoacetate.—To a stirred mixt of 2.24 g (0.01 mole) of N-citronellylpiperazine, 0.69 g (0.005 mole) of K_2CO_3 , and 5 ml of EtCOMe was added 1.67 g (0.01 mole) of ethyl bromoacetate. The mixt was refluxed for 12 hr and filtered while hot, and the residue was washed with hot EtCOMe. The solvent was evapd *in vacuo* and the residue was distd: bp 135-140° (4 mm); yield 2 g, 65%. This product was used directly for the next step.

Ethyl N'-Geranyl-N-piperazinoacetate was prepd as the corresponding N-citronellyl derivative. The reaction took 20 hr: bp 150-155° (0.6 mm); yield 70%. This product was used directly for the next step.

N'-Substituted N-Piperazinoacylhydrazines. General Procedure.—To a soln of 0.01 mole of ethyl N'-substituted-N-piper-

⁽⁷⁾ Melting points are uncorrected and were determined in open glass capillaries on a Büchi apparatus. When analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.

⁽⁸⁾ This substance was obtd by reaction of $n-C_{12}H_{28}Br$ with piperazine [R. Baltzly, J. S. Buck, E. Lorz, and W. Schön, J. Amer. Chem. Soc., **66**, 263 (1944)], and by heating the N,N-bis(β -oxyethyl)-n-dodecylamine at 240° with NH₀OH in an autoclave with a Cu-Ni-Cr catalyst [N. B. Godfrey, U. S. Patent 3,120,524, Feb 4, 1964; Chem. Abstr., **60**, 9293d (1964)].

⁽⁹⁾ This substance was obtd by reaction of phenethyl bromide with piperazine.⁸

TABLE V

5-NITRO-2-FURALDEHYDE PIPERAZINOACYLHYDRAZONES

	\Box	· · · · · ·	~
O ₂ N	0	CH=NNHCO-X-N	_`NR

No.	х	R	Recrystn solvent	Mp, °C	Yield, $\%$	$\mathbf{Formula}^{f}$
1	CH_2	Н	70% EtOH	269-271	85ª	$C_{11}H_{15}N_5O_4\cdot 2HCl^{g}$
2	$\rm CH_2 \rm CH_2$	Me	EtOH	135-137	60	$C_{13}H_{19}N_5O_4 \cdot H_2O$
3	$CH(CH_3)$	Me	i-PrOH-H ₂ O	117-119	80	$C_{13}H_{19}N_5O_4 \cdot 2H_2O^4$
			i-PrOH-H ₂ O	212 - 214		$C_{13}H_{19}N_5O_4 \cdot 2HCl \cdot H_2O^h$
4	CH_2	\mathbf{Et}	EtOAc	152	85	$C_{13}H_{19}N_5O_4$
			EtOAc	145 - 147		$C_{13}H_{19}N_5O_4 \cdot CH_8COOH$
5	CH_2	<i>n</i> -Pr		164-166	6 5	$C_{14}H_{21}N_5O_4$
			EtOH	98-101		C ₁₄ H ₂₁ N ₅ O ₄ ·2CH ₃ COOH
			90% EtOH	223 - 224		$C_{14}H_{21}N_5O_4 \cdot 2HCl \cdot 3H_9O^h$
6	CH_2	<i>i</i> -Pr	Me_2CO	15 6-1 58	50	$C_{14}H_{21}N_5O_4$
			80% EtOH	237 - 239		$C_{14}H_{21}N_5O_4 \cdot 2HCl \cdot H_2O^h$
7	CH_2	<i>n</i> -Bu	<i>i</i> -PrOH	158 - 159	90	$C_{15}H_{23}N_5O_4$
			95% EtOH	226 - 227		C15H23N5O4 · 2HCl ^A
8	CH_2	$n-C_{12}H_{25}$	EtOAc	144-145	65 ^b	$C_{23}H_{39}N_5O_4$
			MeOH	211-212		$C_{23}H_{39}N_5O_4\cdot 2HCl^h$
9	CH_2	Citronellyl	70% EtOH	139-141	50	$C_{21}H_{33}N_5O_4$
			EtOH	140 dec		C21H33N5O4 · 2HNO3
10	CH_2	Geranyl	70% EtOH	110-112	65°	$C_{21}H_{31}N_5O_4$
		-	MeOH	138-140		$C_{21}H_{31}N_5O_4 \cdot 2HNO_3$
11	CH_2	CH_2CH_2OH	EtOAc	181-183	37	$C_{13}H_{19}N_5O_5$
12	CH_2	$CH_2C_6H_5$	EtOAc	200-201	50	$C_{18}H_{21}N_5O_4$
			95% EtOH	185-187		$C_{18}H_{21}N_5O_4 \cdot 2HCl \cdot 2H_2O^h$
13	CH_2	$CH_2CH_2C_6H_5$	<i>i</i> -PrOH	166-16 8	80	$C_{19}H_{23}N_5O_4$
			60% EtOH	239 - 240		$C_{19}H_{23}N_5O_4 \cdot 2HCl^3$
14	CH_2	C_6H_5	EtOH	200-201	80	$C_{17}H_{19}N_5O_4$
			70% EtOH	228 - 230		C ₁₇ H ₁₉ N ₅ O ₄ ·HCl ^A
15	CH_2	C_6H_4 -4- NO_2	Dioxane-H ₂ O	229 - 230	90	$C_{17}H_{18}N_6O_6$
16	CH_2	COCH3	MeOH	1 93–1 95	60	$C_{13}H_{17}N_5O_5$
17	CH_2	$CON(C_2H_5)_2$	EtOAc	171 - 172	65	C16H24N6O5
18	CH_2	CH_CONHN-CH-0 NO.		260-261	9 4 ^d	$C_{18}H_{20}N_8O_8$

^a The reaction mixt was treated with Et₂O and the oil was dissolved in MeOH and acidified with anhyd HCl to give the HCl salt. ^b The base was pptd with H₂O from the reaction mixt. ^c The pptd base must be washed quickly to avoid decompn. ^d The reaction was carried out with 0.02 mole of 5-nitro-2-furaldehyde and 7.5 ml of AcOH. The reaction mixt was treated with hot EtOAc and the ppt was washed with hot aq dioxane. ^e The HNO₃ salt was prepd by acidifying of the MeOH soln of the base with dil HNO₃. ^f See Table II, footnote c. ^e O anal. also. ^h See Table II, footnote d. ⁱ H: calcd, 6.71; found, 7.20. ^j Cl: calcd, 15.47; found 14.94.

azinoacetates (or -N-propionates) in 2 ml of EtOH was added 0.02 mole of hydrazine hydrate. The mixt was refluxed for 2-12 hr. The reaction time was detd by tlc on silica gel G (developed in MeOH-C₆H₆, 95:5, and sprayed with Dragendorff's reagent). The esters showed R_t values higher than the acylhydrazines. Then EtOH was evapd and the residue was distd or crystd (Table IV).

5-Nitro-2-furaldehyde N-Piperazinoacylhydrazones. General Procedure.—To a soln of 0.01 mole of N-piperazinoacylhydrazine in 4 ml of AcOH was added a soln of 0.01 mole of 5-nitro-2-fural-dehyde in 1 ml of AcOH. The reaction was exothermic. The mixt was stirred for 1 hr below 40°, poured into Et_2O , and stirred until a solid, which was filtered and crystd, pptd. Some products pptd as acetates (4, 5), other as bases (12-17). When an oil was obtd, it was dissolved in H_2O and the base was pptd by making the soln alkaline with Na_2CO_3 (2, 3, 5, 6, 7, 9, 10, 11). The HCl salts were obtd by conventional ways in EtOH. (Table V).

Pharmacological Methods. For acute toxicity NMRI albino mice (18-20 g) and for urinary excretion Wistar albino rats (200-250 g) were used. Acute toxicity, antimicrobial and antifungal activity *in vitro*, and urinary excretion were determined as previously described.^{5,10}

(10) E. Massarani, D. Nardi, L. Degen, and M. J. Magistretti, J. Med. Chem., 9, 617 (1966).

Synthetic Antibacterials. 3.¹ Nitrofurylvinyl-1,8-naphthyridine Derivatives

SADAO NISHIGAKI, NORIKO MIZUSHIMA, FUMIO YONEDA,*

Pharmaceutical Institute, School of Medicine, Keio University, Shinanomachi, Shinjuku-ku, Tokyo, Japan

and Hiroshi $T_{AKAHASHI}$

Hoshi College of Pharmacy, Ebara, Shinagawa-ku, Tokyo, Japan

Received January 25, 1971

Our interest in nitrofuran derivatives,^{2,3} bolstered by the finding that certain nitrofurylvinyl-1,8-naphthyridines³ possess outstanding activity against *Pseu*domonas aeruginosa, led us to investigate the synthesis

Paper 2: S. Nishigaki, K. Ogiwara, K. Senga, S. Fukazawa, K. Aida,
 Y. Machida, and F. Yoneda, *Chem. Pharm. Bull.*, 18, 1385 (1970).

⁽²⁾ S. Nishigaki, F. Yoneda, H. Matsumoto, and K. Morinaga, J. Med. Chem., 12, 39 (1969).

⁽³⁾ S. Nishigaki, F. Yoneda, K. Ogiwara, T. Naito, R. Dohmori, S. Kadoya, Y. Tanaka, and I. Takamura, Chem. Pharm. Bull., 17, 1827 (1969).